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MINIMUM PRINCIPLE ON SPECIFIC ENTROPY AND
HIGH-ORDER ACCURATE INVARIANT-REGION-PRESERVING

NUMERICAL METHODS FOR RELATIVISTIC HYDRODYNAMICS∗
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Abstract. This paper first explores Tadmor’s minimum entropy principle for the special rel-
ativistic hydrodynamics (RHD) equations and incorporates this principle into the design of robust
high-order discontinuous Galerkin (DG) and finite volume schemes for RHD on general meshes. The
proposed schemes are rigorously proven to preserve numerical solutions in a global invariant re-
gion constituted by all the known intrinsic constraints: minimum entropy principle, the subluminal
constraint on fluid velocity, the positivity of pressure, and the positivity of rest-mass density. Rel-
ativistic effects lead to some essential difficulties in the present study which are not encountered in
the nonrelativistic case. Most notably, in the RHD case the specific entropy is a highly nonlinear
implicit function of the conservative variables, and, moreover, there is also no explicit formula of the
flux in terms of the conservative variables. In order to overcome the resulting challenges, we first
propose a novel equivalent form of the invariant region by skillfully introducing two auxiliary vari-
ables. As a notable feature, all the constraints in the novel form are explicit and linear with respect
to the conservative variables. This provides a highly effective approach to theoretically analyze the
invariant-region-preserving (IRP) property of numerical schemes for RHD, without any assumption
on the IRP property of the exact Riemann solver. Based on this, we prove the convexity of the
invariant region and establish the generalized Lax–Friedrichs splitting properties via technical esti-
mates, laying the foundation for our rigorous IRP analyses. It is rigorously shown that the first-order
Lax–Friedrichs type scheme for the RHD equations satisfies a local minimum entropy principle and
is IRP under a CFL condition. Provably IRP high-order accurate DG and finite volume methods are
then developed for the RHD with the help of a simple scaling limiter, which is designed by following
the bound-preserving type limiters in the literature. Several numerical examples demonstrate the
effectiveness and robustness of the proposed schemes.
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dynamics, discontinuous Galerkin, finite volume, high-order accuracy
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1. Introduction. In the study of the fluid dynamics, when the fluid flow moves
close to the speed of light or when sufficiently strong gravitational fields are involved,
the special or general relativistic effect has to be taken into account accordingly.
Relativistic hydrodynamics (RHD) plays an important role in a wide range of appli-
cations, e.g., astrophysics and high energy physics, and has been applied to investigate
astrophysical scenarios ranging from stellar to galactic scales.

In the framework of special relativity, the motion of ideal relativistic fluid is
governed by the conservation of mass density D, momentum m, and energy E. In
the laboratory frame, the d-dimensional special RHD equations can be written into
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MINIMUM ENTROPY PRINCIPLE AND IRP METHODS FOR RHD B1165

the following nonlinear hyperbolic system:

(1.1)
∂U

∂t
+

d∑
i=1

∂Fi(U)

∂xi
= 0,

with the conservative vector U and the flux Fi defined by

U = (D, m⊤, E)⊤ = (ρW, ρhW 2v⊤, ρhW 2 − p)⊤,(1.2)

Fi = (Dvi, vim
⊤ + pe⊤i , mi)

⊤ = (ρWvi, ρhW 2viv
⊤ + pe⊤i , ρhW 2vi)

⊤,(1.3)

where, and hereafter, the geometrized unit system is employed so that the speed of
light in vacuum c = 1. In (1.2)–(1.3), ρ denotes the rest-mass density, p is the thermal
pressure, the column vector v = (v1, . . . , vd)

⊤ represents the velocity field of the fluid,
W = 1/

√
1− ∥v∥2 denotes the Lorentz factor with ∥ · ∥ denoting the vector 2-norm,

h = 1+e+ p
ρ stands for the specific enthalpy with e being the specific internal energy,

and the row vector ei denotes the ith column of the identity matrix of size d. To
close the system (1.1), an equation of state (EOS) is needed. We focus on the ideal
EOS: p = (Γ− 1)ρe with the constant Γ ∈ (1, 2] being the adiabatic index, for which
the restriction Γ ≤ 2 is required by compressibility assumptions and the relativistic
causality (cf. [34]).

As we can see from (1.2)–(1.3), the conservative vector U and the flux Fi are
explicitly expressed in terms of the primitive quantities V := (ρ,v⊤, p)⊤. However,
unlike the nonrelativistic case, for RHD there are no explicit formulas for either the
flux Fi or the primitive vectorV in terms ofU. Therefore, in order to evaluate the flux
Fi(U) in the computations, one first has to perform the inverse transformation of (1.2)
from the conservative quantitiesU to the primitive quantitiesV. Given a conservative
vector U = (D,m⊤, E)⊤, we can compute the values of the corresponding primitive
quantities {p(U),v(U), ρ(U)} as follows: First, solve the nonlinear algebraic equation

(1.4)
∥m∥2

E + p
+D

√
1− ∥m∥2

(E + p)2
+

p

Γ− 1
− E = 0, p ∈ [0,+∞),

by utilizing a root-finding algorithm to get the pressure p(U); then calculate the ve-

locity and rest-mass density by v(U) = m/
(
E + p(U)

)
and ρ(U) = D

√
1− ∥v(U)∥2,

respectively. Both the physical significance and the hyperbolicity of (1.1) require that
the constraints

(1.5) ρ > 0, p > 0, ∥v∥ < c = 1,

always hold. In other words, the conservative vector U must stay in the admissible
state set

(1.6) G :=
{
U = (D,m⊤, E)⊤ ∈ Rd+2 : ρ(U) > 0, p(U) > 0, ∥v(U)∥ < 1

}
,

where the functions ρ(U), p(U), and v(U) are highly nonlinear and have no explicit
formulas, as defined above. It was observed in [23] and rigorously proven in [34,
Lemma 2.1] that the set G is convex and is exactly equivalent to the following set:

(1.7) G1 :=
{
U = (D,m⊤, E)⊤ ∈ Rd+2 : D > 0, E >

√
D2 + ∥m∥2

}
.
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B1166 KAILIANG WU

Moreover, if U ∈ G1, then the nonlinear equation (1.4) has a unique positive solution
[34].

Because of the nonlinear hyperbolic nature of the system (1.1), discontinuous so-
lutions may develop from even smooth initial data, and weak solutions must therefore
be considered. As is well known, weak solutions are not uniquely defined in gen-
eral; the following inequality, known as the entropy condition, is often adopted as a
criterion to select the “physically relevant” solution among all weak solutions:

(1.8)
∂E

∂t
+

d∑
i=1

∂Fi

∂xi
≤ 0.

Here (1.8) should be interpreted in the sense of distribution, E (U) is a strictly convex
function of U and called an entropy function, and Fi(U) is the associated entropy
fluxes such that the relation ∂E

∂U
∂Fi

∂U = ∂Fi

∂U holds. Entropy solutions are defined to be
weak solutions which in addition satisfy (1.8) for all entropy pairs (E ,Fi). For the
(nonrelativistic) gas dynamics equations, Tadmor [27] proved that entropy solutions
satisfy a local minimum principle on the specific entropy S(x, t) = log

(
pρ−Γ

)
:

(1.9) S(x, t+ τ) ≥ min {S(y, t) : ∥y − x∥ ≤ τvmax} ,

where τ > 0, and vmax denotes the maximal wave speed. This implies the spatial
minimum of the specific entropy, minx S(x, t), is a nondecreasing function of time t,
and S(x, t) ≥ minx S(x, 0). (Entropy principles were also shown by Guermond and
Popov [8] with viscous regularization of the nonrelativistic Euler equations.) In this
paper, we will explore such a minimum entropy principle in the RHD case and prove
that it also holds for entropy solutions of (1.1). The entropy principle, along with the
intrinsic physical constraints in (1.6), implies a global invariant region for the solution
of the RHD equations (1.1) with initial data U0(x), that is,
(1.10)
ΩS0 :=

{
U = (D,m⊤, E)⊤ ∈ Rd+2 : ρ(U) > 0, p(U) > 0, ∥v(U)∥ < 1, S(U) ≥ S0

}
,

where S0 := ess infx S(U0(x)).
It is natural and interesting to explore robust numerical RHD schemes, whose

solutions always stay in the invariant region ΩS0 , i.e., they satisfy the minimum en-
tropy principle at the discrete level and also preserve the intrinsic physical constraints
(1.5). Note that, to obtain a well-defined specific entropy for the numerical solution,
it is necessary to first guarantee the positivity of pressure and rest-mass density. The
subluminal constraint on fluid velocity is also crucial for the relativistic causality,
as its violation would yield an imaginary Lorentz factor. In fact, violating any of
the constraints (1.5) will cause numerical instability and the breakdown of the com-
putation. Therefore, the preservation of the minimum entropy principle should be
considered together with the constraints (1.5). Recent years have witnessed some
advances in developing high-order numerical schemes, which provably preserve the
constraints (1.5), for the special RHD [34, 24, 37] and the general RHD [28]. Those
works were motivated by [40, 41, 38, 14] on bound-preserving high-order schemes
for scalar conservation laws and the nonrelativistic Euler equations. More recently,
constraint-preserving schemes were also developed for the special relativistic magne-
tohydrodynamics (RMHD) [36, 33], as extension of the positivity-preserving MHD
schemes [29, 30, 31]. In addition, a flux-limiting approach which preserves the posi-
tivity of the rest-mass density was designed in [25]. A reconstruction technique was
proposed in [1] to enforce the subluminal constraint on fluid velocity. A flux-limiting
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entropy-viscosity approach was developed in [6] for RHD, based on a measure of
the entropy generated by the solution. A comprehensive review of numerical RHD
schemes is beyond the scope of the present paper; we refer interested readers to the
review articles [21, 22] and a limited list of some recent works [13, 44, 35, 3, 2, 32]
as well as references therein. Yet, up to now, there is still no work that studied the
minimum entropy principle for the RHD system (1.1) at either the PDE level or the
numerical level, and high-order schemes which preserve the invariant region (1.10)
have not yet been developed for RHD.

For the nonrelativistic counterparts such as the Euler system, the minimum en-
tropy principle and invariant-region-preserving (IRP) numerical schemes have been
well studied in the literature. Tadmor [27] discovered (1.9) and proved, for the equa-
tions of the nonrelativistic gas dynamics, that first-order approximations such as
the Godunov and Lax–Friedrichs (LF) schemes satisfy a minimum entropy principle.
Using a slope reconstruction with limiter, Khobalatte and Perthame [18] developed
second-order kinetic schemes that preserve a discrete minimum principle for the spe-
cific entropy. It was also observed in [18] that enforcing the discrete minimum entropy
principle could help to damp numerical oscillations near the discontinuities. Zhang
and Shu [42] proposed a framework of enforcing the minimum entropy principle for
high-order discontinuous Galerkin (DG) and finite volume schemes, by extending their
high-order positivity-preserving schemes [41, 43], for the nonrelativistic gas dynam-
ics equations. The resulting high-order schemes in [42] were proven to preserve a
discrete minimum entropy principle and the positivity of density and pressure under
a condition accessible by a simple bound-preserving limiter without destroying the
high-order accuracy. Lv and Ihme [20] proposed an entropy-bounded DG scheme for
the Euler equations on arbitrary meshes. Guermond, Popov, and their collaborators
(cf. [9, 10, 7, 11]) developed the IRP approximations in the context of continuous
finite elements with convex limiting for solving general hyperbolic systems including
the Euler system. Jiang and Liu proposed new IRP limiters for the DG methods
solving the isentropic Euler system [17], the compressible Euler system [15], and gen-
eral multidimensional hyperbolic conservation laws [16]. Gouasmi et al. [5] proved a
minimum entropy principle on entropy solutions to the compressible multicomponent
Euler system at the smooth and discrete levels.

The aim of this paper is twofold. First, we show that the minimum entropy prin-
ciple (1.9), which was originally demonstrated by Tadmor [27] for the (nonrelativistic)
gas dynamics, is also valid for the RHD equations (1.1) with the ideal EOS. A key
point in the present study is to prove a condition on smooth function H(S) such that
the entropy function E (U) = −DH(S) is strictly convex. Our second goal is to de-
velop high-order accurate IRP DG and finite volume methods which provably preserve
the numerical solutions in the invariant region ΩS0 , i.e., preserve a discrete minimum
entropy principle and the intrinsic physical constraints (1.5). In fact, achieving these
two goals is nontrivial. Due to the nonlinearity and the implicit form of the function
S(U), it is hard to study the convexity of the entropy function E (U) in the RHD case;
see Proposition 2.1. Also, analytically judging whether an arbitrarily given state U
belongs to ΩS0 is already a difficult task; it is more challenging to design and analyze
numerical schemes that provably preserve the solutions in ΩS0 . We will address the
difficulties via a novel equivalent form of the invariant region; see Theorem 3.3. As
a notable feature, all the constraints in the novel form are explicit and linear with
respect to the conservative variables. This provides a highly effective approach to the-
oretically analyze the IRP property of RHD schemes. Based on this, we will prove the
convexity of the invariant region (section 3.2) and establish the generalized LF split-
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B1168 KAILIANG WU

ting properties via highly technical estimates (section 3.3), which lay the foundation
for analyzing our IRP schemes in sections 4–5. The high-order accurate IRP schemes
are constructed with the aid of a simple scaling limiter, which is designed by following
the bound-preserving type limiters and frameworks in the literature [41, 42, 24, 16, 37].

It is worth noting that the proposed numerical IRP analysis approach has some
essential and significant differences compared to those in the literature (cf. [42, 9,
7, 16]). For example, some standard analyses on the IRP properties of numerical
schemes often relied on invoking the IRP property of the exact Riemann solver for
the studied equations, while our IRP analyses do not require any assumption on
the IRP property of the exact Riemann solver.1 Instead, we directly prove the IRP
properties of the LF approximate Riemann solver and numerical schemes with the LF
flux by using our novel equivalent form of the invariant region and the generalized
LF splitting properties. Thus our analysis approach can be potentially extensible
to some other complicated physical systems for which the exact Riemann solver is
not easily available or generally not IRP (e.g., for multidimensional MHD systems
[29, 30, 31, 33] if there is a numerical jump in the parallel magnetic component).

2. Minimum entropy principle at the PDE level.

2.1. Convex entropy functions. LetH(S) be a function of the specific entropy
S. As shown in [2] for d = 1, for any smooth function H(S), the smooth solutions of
the RHD equations (1.1) satisfy

(2.1)
∂

∂t

(
− ρWH(S)

)
+

d∑
i=1

∂

∂xi

(
− ρWviH(S)

)
= 0,

which also holds for the multidimensional cases (2 ≤ d ≤ 3). In fact, the derivations
of (2.1) for 2 ≤ d ≤ 3 are very similar to that for d = 1, and we give a unified proof for
arbitrary d in section SM1 of the supplementary material for completeness. Equation
(2.1) implies that (E ,Fi) =

(
−DH(S),−DviH(S)

)
is an entropy–entropy flux pair

if E (U) = −DH(S) is a strictly convex function of the conservative variables U ∈ G.
It is well known that, for a special choice H(S) = S or H(S) = S

Γ−1 , the corre-
sponding E (U) is a valid entropy function for the RHD; see [6, 2, 3, 32]. However,
it is unclear, for a general H(S), what the condition is on H(S) such that the corre-
sponding E (U) is strictly convex. This has not been addressed for the RHD case in
the literature and is now explored in the following proposition.

Proposition 2.1. For a smooth function H(S), the corresponding E (U) =
−DH(S) is a strictly convex entropy function if and only if

(2.2) H′(S) > 0, H′(S)− ΓH′′(S) > 0.

Proof. We study the convexity of E (U) by investigating the positive definiteness

of the Hessian matrix Euu :=
(

∂2E
∂ui∂uj

)
1≤i,j≤d+2

, where ui denotes the ith component

of U. A straightforward calculation gives ∂2E
∂ui∂uj

= −H′(S)
(
∂D
∂ui

∂S
∂uj

+ ∂D
∂uj

∂S
∂ui

)
−

DH′′(S) ∂S
∂ui

∂S
∂uj

−DH′(S) ∂2S
∂ui∂uj

. This implies that

Euu = −H′(S)
(
e1S

⊤
u + Sue

⊤
1 +DSuu

)
−DH′′(S)SuS

⊤
u(2.3)

1It is often reasonable to invoke or assume that the exact Riemann solver preserves the invariant
domain. In fact, this is provenly true for a number of other systems, but has not yet been proven
for the RHD equations (1.1). Rigorous analysis on the IRP property of the exact Riemann solver,
including the preservation of the constraints (1.5), is highly nontrivial.
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= −H′(S)A1 +
D

Γ
(H′(S)− ΓH′′(S))SuS

⊤
u ,

where e1 = (1,0⊤
d+1)

⊤, 0d+1 denotes the zero vector of length d+ 1, and

A1 := e1S
⊤
u + Sue

⊤
1 +DSuu +

1

Γ
DSuS

⊤
u .

Since S cannot be explicitly formulated in terms of U, direct derivation of Su and
Suu is difficult. Consider the primitive variables V = (ρ,v⊤, p)⊤. Note that both S
and U can be explicitly formulated in terms of V; then it is easy to derive

∂S

∂V
=
(
−Γ/ρ, 0⊤

d , 1/p
)
,

∂U

∂V
=

 W ρW 3v⊤ 0

W 2v ρhW 2Id + 2ρhW 4vv⊤ ΓW 2

Γ−1 v

W 2 2ρhW 4v⊤ ΓW 2

Γ−1 − 1

 ,

where Id denotes the identity matrix of size d. The inverse of the matrix ∂U
∂V gives

∂V

∂U
=

1

ρh(1 − c2s∥v∥2)

ρh(1 − (Γ − 1)∥v∥2)W−1 −ρ(1 + (Γ − 1)∥v∥2)v⊤ ρΓ∥v∥2

(Γ − 1)W−3v A2 Γ
(
∥v∥2 − 1

)
v

−(Γp + (Γ − 1)ρ)W−1 −(2Γp + (Γ − 1)ρ)v⊤ Γp
(
1 + ∥v∥2

)
+ (Γ − 1)ρ



with A2 :=
(
1− ∥v∥2

) [(
1− c2s∥v∥2

)
Id +

(
Γ− 1 + c2s

)
vv⊤], and cs =

√
Γp
ρh denoting

the acoustic wave speed in the RHD case (0 < cs < 1). It follows that

(2.4) S⊤
u =

∂S

∂U
=

∂S

∂V

∂V

∂U
=

Γ− 1

p

(
−hW−1, − v⊤, 1

)
.

The derivative of S⊤
u with respect to V gives

Suv =

 Γ
ρ2

√
1− ∥v∥2 Γ−1

p hWv⊤ Γ−1
p2

√
1− ∥v∥2

0d −Γ−1
p Id

Γ−1
p2 v

0 0⊤
d −Γ−1

p2

 .

Then we obtain

A1 = e1S
⊤
u + Sue

⊤
1 +DSuv

∂V

∂U
+

1

Γ
DSuS

⊤
u

=
1− Γ

ph(h− 1)(1− c2s∥v∥2)

 a1 a2v
⊤ a3

a2v A3 a4v
a3 a4v

⊤ a5


with

a1 := h(Γ− 1)W−1 > 0, a2 := (2h− 1)(Γ− 1), a3 := −(Γ− 1)(h+ (h− 1)∥v∥2),

A3 :=
(h− 1)(1− c2s∥v∥2)

W
Id +W

(
(h− 1)(1− c2s∥v∥2) +

1

h
(Γ− 1)(2h− 1)2

)
vv⊤,

a4 := W
(
h(1− c2s∥v∥2)− Γ(2h− 1)

)
, a5 := W

(
(h− 1)(2Γ− 1)∥v∥2 + (Γ− 1)h

)
.

Consider the invertible matrix

P1 :=

 1 0⊤
d 0

−a2

a1
v Id 0d

−a3

a1
0⊤
d 1

 .
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A straightforward calculation gives

(2.5) P1A1P
⊤
1 =

1− Γ

ph(h− 1)(1− c2s∥v∥2)

(
a1 0⊤

d+1

0d+1 a6A4

)
with a6 := (h− 1)W

(
1− c2s∥v∥2

)
> 0, and

(2.6) A4 :=

(
(1− ∥v∥2)Id + vv⊤ − v

−v⊤ ∥v∥2
)
.

Note that

(2.7) P1Su =
Γ− 1

p

(
− hW−1, 2(h− 1)v⊤, (1− h)(1 + ∥v∥2)

)⊤
=:

Γ− 1

p
b1.

Combining (2.3), (2.5), and (2.7) gives

(2.8) P1EuuP
⊤
1 = a7H′(S)A5 + a8

(
H′(S)− ΓH′′(S)

)
b1b

⊤
1

with a7 := Γ−1
ph(h−1)(1−c2s∥v∥2) > 0, a8 := D(Γ−1)2

p2Γ > 0, and

A5 :=

(
a1 0⊤

d+1

0d+1 a6A4

)
.

Let us study the property of A4 defined in (2.6). The matrix (1 − ∥v∥2)Id + vv⊤

is symmetric, and its eigenvalues consist of 1 and 1− ∥v∥2, which are both positive,
implying that (1−∥v∥2)Id+vv⊤ is positive definite. Furthermore, a direct calculation
shows det(A4) = 0. Therefore, A4 is positive semidefinite, and rank(A4) = d. Since
a1 > 0 and a6 > 0, it follows that A5 is positive semidefinite, and rank(A5) = d+ 1.
Hence, there exists a rank-(d+ 1) matrix A6 ∈ R(d+1)×(d+2) such that

(2.9) A5 = A⊤
6 A6.

Because Euu and P1EuuP
⊤
1 are congruent, it suffices to prove that the matrix

P1EuuP
⊤
1 is positive definite if and only if H(S) satisfies the condition (2.2).

(i). First, prove the condition (2.2) is sufficient for the positive definiteness of
P1EuuP

⊤
1 . Because A5 and b1b

⊤
1 are both positive semidefinite, by (2.8) we know

that P1EuuP
⊤
1 is positive semidefinite under the condition (2.2). This means

(2.10) z⊤P1EuuP
⊤
1 z ≥ 0 ∀z ∈ Rd+2.

Hence, it suffices to show z = 0 when z⊤P1EuuP
⊤
1 z = 0. Using (2.8) and (2.9), we

obtain

z⊤P1EuuP
⊤
1 z = a7H′(S)∥A6z∥2 + a8

(
H′(S)− ΓH′′(S)

) ∣∣b⊤1 z∣∣2 = 0,

which implies A6z = 0d+1 and b⊤1 z = 0. Then A5z = A⊤
6 A6z = 0. Let z =:

(z(1), z(2), z(3))⊤ with z(2) ∈ Rd. From A5z = 0 we can deduce that a1z
(1) = 0 and

a6A4(z
(2), z(3))⊤ = 0. This further yields z(1) = 0 and

(1− ∥v∥2)z(2) + vv⊤z(2) − z(3)v = 0d,(2.11)

− v⊤z(2) + ∥v∥2z(3) = 0.(2.12)
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MINIMUM ENTROPY PRINCIPLE AND IRP METHODS FOR RHD B1171

Combining z(1) = 0 and b⊤1 z = 0 gives

2(h− 1)v⊤z(2) + (1− h)(1 + ∥v∥2)z(3) = 0,

which, together with (2.12), implies v⊤z(2) = z(3) = 0. Substituting it into (2.11)
gives z(2) = 0d. Therefore, we have z = 0 when z⊤P1EuuP

⊤
1 z = 0. This along

with (2.10) yields that P1EuuP
⊤
1 is positive definite under the condition (2.2). We

complete the proof of sufficiency.
(ii). We then prove the condition (2.2) is necessary for the positive definiteness

of P1EuuP
⊤
1 . Assume that P1EuuP

⊤
1 is positive definite; then

(2.13)

z⊤P1EuuP
⊤
1 z = a7H′(S)z⊤A5z+a8

(
H′(S)−ΓH′′(S)

) ∣∣b⊤1 z∣∣2 > 0 ∀z ∈ Rd+2 \{0}.

Note that the matrix A5 does not have full rank. There exist two vectors z1, z2 ∈
Rd+2 \ {0} such that A5z1 = 0 and b⊤1 z2 = 0, respectively. It follows from (2.13)
that

0 < z⊤
2 P1EuuP

⊤
1 z2 = a7H′(S)z⊤

2 A5z2 = a7H′(S)∥A6z2∥2,

0 < z⊤
1 P1EuuP

⊤
1 z1 = a8

(
H′(S)− ΓH′′(S)

) ∣∣b⊤1 z1∣∣2 ,
which imply H′(S) > 0 and H′(S)−ΓH′′(S) > 0, respectively. The proof of necessity
is complete.

Remark 2.2. Proposition 2.1 and (2.1) imply that there exist a family of (gen-
eralized) entropy pairs (E ,Fi) associated with the d-dimensional (1 ≤ d ≤ 3) RHD
equations (1.1),

(2.14) E (U) = −DH(S), Fi(U) = −DviH(S), i = 1, . . . , d,

generated by the smooth functions H(S) satisfying (2.2). Our found condition (2.2)
is consistent with the one derived by Harten [12, section 2] for the two-dimensional
(2D) nonrelativistic Euler system. However, the analyses in the RHD case do not
directly follow from [12] but are more difficult. Due to the complicated structures of
the matrix Euu, some standard approaches for studying its positive definiteness, e.g.,
checking the positivity of its leading principal minors, can be intractable in our RHD
case.

2.2. Minimum principle of the specific entropy. We are now in a position to
verify that Tadmor’s minimum entropy principle (1.9) also holds for the RHD system
(1.1). We consider the convex entropy E (U) = −DH(S) established in section 2.1 for
all smooth functions H(S) satisfying (2.2).

Assume thatU(x, t) is an entropy solution of the RHD equations (1.1). According
to [26, Theorem 4.1] and following [27, Lemma 3.1], we have, for all smooth functions
H(S) satisfying (2.2),∫

∥x−x0∥≤R

D(x, t+ τ)H(S(x, t+ τ))dx ≥
∫
∥x−x0∥≤R+τvmax

D(x, t)H(S(x, t))dx

∀R > 0,

where vmax denotes the maximal wave speed in the domain; we can take vmax as the
speed of light c = 1, a simple upper bound of all wave speeds in the RHD case. Note
that the density involved in (2.15) is D = ρW instead of the rest-mass density ρ.
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Consider a special function H0(S) [27] defined by

H0(S) := min{S − S0, 0}, S0 = min {S(y, t) : ∥y − x0∥ ≤ R+ τvmax} .

As observed in [27], the function H0(S), although not smooth, can be written as the
limit of a sequence of smooth functions satisfying (2.2); see also [5, section 3.1] for
a detailed review. Therefore, by passing to the limit, the inequality (2.15) holds for
H = H0, which gives∫

∥x−x0∥≤R

D(x, t+ τ)min{S(x, t + τ)− S0, 0}dx

≥
∫
∥x−x0∥≤R+τvmax

D(x, t)H0(S(x, t))dx = 0.

Because D(x, t + τ) > 0, we obtain min{S(x, t + τ) − S0, 0} = 0 for ∥x − x0∥ ≤ R.
This leads to

(2.15) S(x, t+τ) ≥ S0 = min {S(y, t) : ∥y − x0∥ ≤ R+ τvmax} ∀∥x−x0∥ ≤ R,

which yields the local minimum entropy principle (1.9). In particular, this implies
that the spatial minimum of the specific entropy, minx S(x, t), is a nondecreasing
function of time t, yielding

(2.16) S(x, t) ≥ min
x

S(x, 0) ∀t ≥ 0.

In the above derivation it is implicitly assumed that U(x, t) always satisfies the
physical constraints (1.5). The entropy principle (2.16) and the constraints (1.5)
constitute the global invariant region ΩS0

, defined in (1.10), for entropy solutions of
the RHD equations (1.1).

3. Auxiliary theories for numerical analysis. In order to analyze the lo-
cal minimum entropy principle of numerical schemes, we introduce a (more general)
“local” invariant region for an arbitrarily given σ:
(3.1)
Ωσ :=

{
U = (D,m⊤, E)⊤ ∈ Rd+2 : ρ(U) > 0, p(U) > 0, ∥v(U)∥ < 1, S(U) ≥ σ

}
.

The special choice σ = S0 = ess infx S(x, 0) corresponds to the global invariant region
ΩS0

in (1.10). It is evident that the following “monotonicity” holds for Ωσ.

Lemma 3.1 (monotonic decreasing). If σ1 ≥ σ2, then Ωσ1 ⊆ Ωσ2 .

Thanks to G = G1 proved in [34, Lemma 2.1], we immediately have the following
lemma.

Lemma 3.2 (first equivalent form). The invariant region set Ωσ is equivalent to
(3.2)

Ω(1)
σ =

{
U = (D,m⊤, E)⊤ ∈ Rd+2 : D > 0, E >

√
D2 + ∥m∥2, S(U) ≥ σ

}
.

The specific entropy S = log(pρ−Γ) is a nonlinear function of (ρ, p), and, as
mentioned in section 1, the functions ρ(U) and p(U) are already nonlinear and without
explicit formulas. The combination of these nonlinear functions leads to S(U), which
is a highly nonlinear function and also cannot be explicitly formulated in terms of U.
This makes it difficult to study the minimum entropy principle at the numerical level
and explore IRP schemes for RHD. In order to overcome these challenges, several
important properties of the invariant region Ωσ will be derived in this section.
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3.1. An explicit and linear equivalent form of invariant region. To ad-
dress the difficulties arising from the nonlinearity of S(U), we discover the following
novel equivalent form of Ωσ.

Theorem 3.3 (second equivalent form). The invariant region set Ωσ is equiva-
lent to

Ω(2)
σ =

{
U = (D,m⊤, E)⊤ ∈ Rd+2 : D > 0,(3.3)

φσ(U;v∗, ρ∗) ≥ 0 ∀v∗ ∈ B1(0), ∀ρ∗ ∈ R+
}
,

where B1(0) := {x ∈ Rd : |x| < 1} denotes the open unit ball centered at 0 in Rd, and
(3.4)

φσ(U;v∗, ρ∗) := E −m · v∗ −D
√
1− ∥v∗∥2 + eσ

(
ρΓ∗ − Γ

Γ− 1
DρΓ−1

∗
√
1− ∥v∗∥2

)
.

Before proving Theorem 3.3, we mention a crucial feature of the above equivalent

form Ω
(2)
σ . Note that all the “nonlinear” constraints in Ω

(1)
σ or Ωσ are equivalently

transformed into a linear constraint φσ(U;v∗, ρ∗) ≥ 0 in (3.3). As a result, all the

constraints in Ω
(2)
σ are explicit and linear with respect to U, although two (additional)

auxiliary variables v∗ and ρ∗ are introduced here. Such linearity makes Ω
(2)
σ very useful

for analytically verifying the IRP property of RHD schemes. This becomes a key to
our IRP analysis, which is significantly different from the standard bound-preserving
and IRP analysis techniques in, e.g., [41, 42, 16].

We first give two useful lemmas, whose proofs can be found in sections SM2 and
SM3 of the supplementary material.

Lemma 3.4. For any η > − 1
2 , we have (ηΓ+1)

1
Γ ≥ (2η+1)

1
2 , where the adiabatic

index Γ ∈ (1, 2].

Lemma 3.5. For any v,v∗ ∈ B1(0), it holds that

(3.5)
Γ(1− v · v∗)

1− ∥v∥2
− Γ + 1 ≥

( √
1− ∥v∥2√
1− ∥v∗∥2

)−Γ

.

We are now in a position to prove Theorem 3.3.

Proof of Theorem 3.3. The proof of Ωσ = Ω
(2)
σ consists of showing that Ω

(2)
σ ⊆ Ωσ

and that Ωσ ⊆ Ω
(2)
σ .

(i). Prove that U ∈ Ω
(2)
σ ⇒ U ∈ Ωσ. When U = (D,m⊤, E)⊤ ∈ Ω

(2)
σ , by

definition we have D > 0 and

(3.6) φσ(U;v∗, ρ∗) ≥ 0 ∀v∗ ∈ B1(0), ∀ρ∗ ∈ R+.

If we take a special (v∗, ρ∗) =
(

m√
D2+∥m∥2

, D2√
D2+∥m∥2

)
, which satisfies v∗ ∈ B1(0)

and ρ∗ > 0, then

0 ≤ φσ

(
U;

m√
D2 + ∥m∥2

,
D2√

D2 + ∥m∥2

)

= E −
√
D2 + ∥m∥2 − eσ

Γ− 1

(
D2√

D2 + ∥m∥2

)Γ

< E −
√
D2 + ∥m∥2,
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which implies the second constraint in G1. This, along with D > 0, yields U ∈ G1 = G.
Therefore, the corresponding primitive quantities of U satisfy

(3.7) ρ(U) > 0, p(U) > 0, ∥v(U)∥ < 1.

Taking another special (v∗, ρ∗) = (v(U), ρ(U)) in (3.6) gives

0 ≤ φσ (U;v(U), ρ(U))

= E −m · v −D
√

1− ∥v∥2 + eσ
(
ρΓ − Γ

Γ− 1
DρΓ−1

√
1− ∥v∥2

)
=

p− eσρΓ

Γ− 1
,

which, together with Γ > 1, imply p ≥ eσρΓ. It follows that S(U) = log(pρ−Γ) ≥ σ.
Combining it with (3.7), we obtain U ∈ Ωσ.

(ii). We prove that U ∈ Ωσ ⇒ U ∈ Ω
(2)
σ . When U = (D,m⊤, E)⊤ ∈ Ωσ, the

corresponding primitive quantities satisfy

(3.8) ρ > 0, ∥v∥ < 1, p ≥ eσρΓ.

This immediately gives D = ρW = ρ
(
1− ∥v∥2

)− 1
2 > 0. It remains to prove φσ(U;

v∗, ρ∗) ≥ 0 for any v∗ ∈ B1(0) and any ρ∗ > 0. Let us rewrite φσ(U;v∗, ρ∗) as

φσ(U;v∗, ρ∗) = Π1p+Π2,

with

Π1 :=
Γ

Γ− 1

(
1− v · v∗

1− ∥v∥2

)
− 1 ≥ 2

(
1− v · v∗

1− ∥v∥2

)
− 1 =

(1− ∥v∥)2 + 2 (∥v∥ − v · v∗)

1− ∥v∥2

> 0,

Π2 := ρ

(
1− v · v∗

1− ∥v∥2
−
√
1− ∥v∗∥2√
1− ∥v∥2

)
+ eσ

(
ρΓ∗ − Γ

Γ− 1
ρρΓ−1

∗

√
1− ∥v∗∥2√
1− ∥v∥2

)
,

where Γ ∈ (1, 2] and ∥v∥ < 1 are used in showing Π1 > 0. Then, using p ≥ eσρΓ gives

φσ(U;v∗, ρ∗) ≥ Π1e
σρΓ +Π2 =

ρ

1− ∥v∥2
(
1− v · v∗ −

√
1− ∥v∥2

√
1− ∥v∗∥2

)
+ eσρΓΠ3(3.9)

≥ ρ

1− ∥v∥2
(
1−

√
∥v∥2 + (1− ∥v∥2)

√
∥v∗∥2 + (1− ∥v∗∥2)

)
+ eσρΓΠ3

= eσρΓΠ3,

where the Cauchy–Schwarz inequality has been used, and Π3 := ϕσ

(
ρ
ρ∗
;v,v∗

)
with

ϕσ(x;v,v∗) := x−Γ −
Γ
√
1− ∥v∗∥2

(Γ− 1)
√
1− ∥v∥2

x−Γ+1 +
Γ(1− v · v∗)

(Γ− 1) (1− ∥v∥2)
− 1, x > 0.

It is easy to verify that the function ϕσ(x;v,v∗) is strictly decreasing on the interval(
0,

√
1−∥v∥2

√
1−∥v∗∥2

]
and strictly increasing on

[ √1−∥v∥2

√
1−∥v∗∥2

,+∞
)
with respect to x. Therefore,

we have

Π3 ≥ min
x∈R+

ϕσ(x;v,v∗) = ϕσ

( √
1− ∥v∥2√
1− ∥v∗∥2

;v,v∗
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=
1

Γ− 1

−( √1− ∥v∥2√
1− ∥v∗∥2

)−Γ

+
Γ(1− v · v∗)

1− ∥v∥2
− Γ + 1

 ≥ 0,(3.10)

where we used Γ ∈ (1, 2] and inequality (3.5) in Lemma 3.5. Then combining (3.1)–
(3.10), we conclude φσ(U;v∗, ρ∗) ≥ eσρΓΠ3 ≥ 0. This, along with D > 0, implies

U ∈ Ω
(2)
σ . The proof is now complete.

Considering σ → −∞ in Ωσ and using Theorem 3.3, one can also obtain the
following corollary.

Corollary 3.6. The admissible state set G is equivalent to

G2 :=
{
U = (D,m⊤, E)⊤ ∈ Rd+2 : D > 0,

E > m · v∗ +D
√
1− ∥v∗∥2 ∀v∗ ∈ B1(0)

}
.

3.2. Convexity of invariant region. The convexity of an invariant region is
a highly desirable property, as it can be used to simplify the IRP analysis of those
numerical schemes that can be reformulated into some suitable convex combinations;
see, for example, [41, 42, 29, 16]. For the RHD case, the convexity of the invariant
region Ωσ is discussed below.

Lemma 3.7. For any fixed σ ∈ R, the invariant region Ωσ is a convex set.

Proof. Since Ωσ = Ω
(2)
σ , one need only show the convexity of Ω

(2)
σ . For any

U1 = (D1,m
⊤
1 , E1)

⊤, U2 = (D2,m
⊤
2 , E2)

⊤ ∈ Ω
(2)
σ , and any λ ∈ [0, 1], we have

λD1 + (1− λ)D2 > 0, and for any v∗ ∈ B1(0), ρ∗ ∈ R+, it holds that

φσ

(
λU1 + (1− λ)U2;v∗, ρ∗

)
= λφσ(U1;v∗, ρ∗) + (1− λ)φσ(U2;v∗, ρ∗) ≥ 0,

where the linearity of φσ(U;v∗, ρ∗) with respect to U has been used. Hence, we

obtain λU1 + (1− λ)U2 ∈ Ω
(2)
σ , and by definition, Ω

(2)
σ is a convex set.

The following more general conclusion can be shown by using Lemmas 3.7 and
3.1.

Lemma 3.8. Let σ1 and σ2 be two real numbers. For any U1 ∈ Ωσ1
and any

U2 ∈ Ωσ2
,

λU1 + (1− λ)U2 ∈ Ωmin{σ1,σ2} ∀λ ∈ [0, 1].

Proof. With the help of Lemma 3.1, we have Ui ∈ Ωσi
⊆ Ωmin{σ1,σ2}, i = 1, 2.

The proof is then completed by using the convexity of Ωmin{σ1,σ2}.

An alternative proof based on Jensen’s inequality is also provided in section SM4
of the supplementary material.

3.3. Generalized Lax–Friedrichs splitting properties. In the bound-pre-
serving analysis of numerical schemes with the LF flux, the following property (3.11)
is usually expected:

(3.11) U± Fi(U)

α
∈ Ωσ ∀U ∈ Ωσ, ∀α ≥ αi,

where αi denotes an appropriate upper bound for the wave speeds in the xi-direction;
for the RHD system it can be taken as the speed of light. We refer to (3.11) as the
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LF splitting property. This property is valid for the admissible state set G or G1 and
played an important role in constructing bound-preserving schemes for the RHD; see
[34, 24, 37]. Unfortunately, however, the property (3.11) does not hold in general for
the invariant region Ωσ as the entropy principle S(U) ≥ σ is included.

Since (3.11) is invalid for Ωσ, we look for some alternative properties that hold for
Ωσ but are weaker than (3.11). This motivates us to study a suitable convex combi-

nation of several different terms like U± Fi(U)
α , so that we finally achieve generalized

LF (gLF) splitting properties, whose derivations are highly nontrivial. Built on a
technical inequality (3.12) constructed in section 3.3.1, the gLF splitting properties
are presented in section 3.3.2.

3.3.1. A constructive inequality. An important inequality (3.12) is first con-
structed, which will be the key to establishing the gLF splitting properties.

Theorem 3.9. If U ∈ Ωσ, then for any v∗ = (v1,∗, . . . , vd,∗)
⊤ ∈ B1(0), any

ρ∗ ∈ R+, and any θ ∈ [−1, 1], it holds that

(3.12) φσ

(
U+ θFi(U);v∗, ρ∗

)
+ θeσvi,∗ρ

Γ
∗ ≥ 0,

where i ∈ {1, . . . , d}, and the function φσ is defined in (3.4).

Proof. Due to the relativistic effects, the flux Fi(U) also cannot be explicitly
formulated in terms of U. Therefore, we have to work on the corresponding primitive
quantities {ρ,v, p} of U, which satisfy ρ > 0, ∥v∥ < 1, and p ≥ eσρΓ because U ∈ Ωσ.
We observe that

φσ

(
U+ θFi(U);v∗, ρ∗

)
+ θeσvi,∗ρ

Γ
∗ = Π̂1 + Π̂2p+ eσΠ̂3,

with

Π̂1 := ρW 2(1 + θvi)
(
1− v · v∗ −

√
1− ∥v∥2

√
1− ∥v∗∥2

)
,

Π̂2 :=
Γ

Γ− 1
(1 + θvi)

(
1− v · v∗

1− ∥v∥2

)
− (1 + θvi,∗),

Π̂3 := ρΓ∗ (1 + θvi,∗)−
Γ

Γ− 1
(1 + θvi)ρWρΓ−1

∗
√
1− ∥v∗∥2.

Using the Cauchy–Schwarz inequality gives

v · v∗ +
√
1− ∥v∥2

√
1− ∥v∗∥2 ≤

√
∥v∥2 + (1− ∥v∥2)

√
∥v∗∥2 + (1− ∥v∗∥2) = 1,

which implies Π̂1 ≥ 0. It follows that

(3.13) φσ

(
U+ θFi(U);v∗, ρ∗

)
+ θeσvi,∗ρ

Γ
∗ ≥ Π̂2p+ eσΠ̂3.

Recalling that Γ ∈ (1, 2], ∥v∥ < 1, and ∥v∗∥ < 1, we obtain

(3.14) Π̂2 ≥ 2

(
1 + θvi
1− ∥v∥2

)
(1− v · v∗)− (1 + θvi,∗) =: Π̃2 > 0,

where the positivity of Π̃2 is deduced by using the Cauchy–Schwarz inequality as
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follows:

Π̃2 = 2

(
1 + θvi
1− ∥v∥2

)
− 1− 2

(
1 + θvi
1− ∥v∥2

)(vi + θ(1− ∥v∥2)
2(1 + θvi)

)
vi,∗ +

∑
j ̸=i

vjvj,∗


≥ 2

(
1 + θvi
1− ∥v∥2

)
− 1− 2

(
1 + θvi
1− ∥v∥2

)(vi + θ(1− ∥v∥2)
2(1 + θvi)

)2

+
∑
j ̸=i

v2j

 1
2

∥v∗∥

= 2

(
1 + θvi
1− ∥v∥2

)
− 1− 2

(
1 + θvi
1− ∥v∥2

)
∥v∗∥

[
1− 1− ∥v∥2

1 + θvi
+

θ2(1− ∥v∥2)2

4(1 + θvi)2

] 1
2

≥ 2

(
1 + θvi
1− ∥v∥2

)
− 1− 2

(
1 + θvi
1− ∥v∥2

)
∥v∗∥

[(
1− 1− ∥v∥2

2(1 + θvi)

)2
] 1

2

=

[
2

(
1 + θvi
1− ∥v∥2

)
− 1

]
(1− ∥v∗∥) ≥

[
2

(
1− ∥v∥
1− ∥v∥2

)
− 1

]
(1− ∥v∗∥) > 0.

(3.15)

Combining Π̂2 > 0 and p ≥ eσρΓ, we then derive from (3.13) that

(3.16) φσ

(
U+ θFi(U);v∗, ρ∗

)
+ θeσvi,∗ρ

Γ
∗ ≥ Π̂2e

σρΓ + eσΠ̂3 = eσρΓΠ̂4,

with Π̂4 := Π̂2 + ρ−ΓΠ̂3 = ϕ̂σ

(
ρ
ρ∗
;v,v∗

)
and

ϕ̂σ(x;v,v∗) := Π̂2 + x−Γ (1 + θvi,∗)− x−Γ+1

(
Γ

Γ− 1
(1 + θvi)

√
1− ∥v∗∥2√
1− ∥v∥2

)
.

The subsequent task is to show that Π̂4 is always nonnegative. Define

ηs :=
1 + θvi
1 + θvi,∗

(
1− v · v∗

1− ∥v∥2

)
− 1, xs :=

(1 + θvi,∗)
√
1− ∥v∥2

(1 + θvi)
√

1− ∥v∗∥2
.

By studying the derivative of ϕ̂σ with respect to x, we observe that the function ϕ̂σ

is strictly decreasing on the interval (0, xs] and strictly increasing on [xs,+∞). We
therefore have

Π̂4 ≥ min
x∈R+

ϕ̂σ(x;v,v∗) = ϕ̂σ(xs;v,v∗)

= Π̂2 −
1

Γ− 1
x−Γ
s (1 + θvi,∗) =

1 + θvi,∗
Γ− 1

(
ηsΓ + 1− x−Γ

s

)
.(3.17)

Using the formulation of Π̃2 defined in (3.14), we reformulate ηs and observe that

ηs =
1

2

(
Π̃2

1 + θvi,∗
+ 1

)
− 1 =

Π̃2

2(1 + θvi,∗)
− 1

2
> −1

2
,

where the last step follows from the positivity of Π̃2, which has been proven in (3.15).
Thanks to Lemma 3.4, we obtain (ηsΓ+1)1/Γ ≥ (2ηs+1)1/2, or equivalently, ηsΓ+1 ≥
(2ηs + 1)

Γ
2 , which, along with (3.17), imply

(3.18) Π̂4 ≥ 1 + θvi,∗
Γ− 1

[(
2ηs + 1

)Γ
2 −

(
x−2
s

)Γ
2

]
.
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Next, we would like to show that 2ηs+1 ≥ x−2
s . Define a1 := θvi, a2 :=

√
∥v∥2 − θ2v2i ,

b1 := θvi,∗, and b2 :=
√
∥v∗∥2 − θ2v2i,∗. By an elementary inequality2

(1 + a1)
2(1− b21 − b22) + (1 + b1)

2(1− a21 − a22) ≤ 2(1− a1b1 − a2b2)(1 + a1)(1 + b1),

we get

(3.19) x−2
s =

(1 + a1)
2(1− b21 − b22)

(1 + b1)2(1− a21 − a22)
≤ 2

(1− a1b1 − a2b2)(1 + a1)

(1 + b1)(1− a21 − a22)
− 1 = 2η̃s + 1

with η̃s :=
1+θvi
1+θvi,∗

(
1−a1b1−a2b2

1−∥v∥2

)
− 1. With the aid of the Cauchy–Schwarz inequality,

we obtain

v · v∗ = θ2vivi,∗ +
(
vi
√
1− θ2

)(
vi,∗
√

1− θ2
)
+
∑
j ̸=i

vjvj,∗

≤ θ2vivi,∗ +

(vi√1− θ2
)2

+
∑
j ̸=i

v2j

 1
2
(vi,∗√1− θ2

)2
+
∑
j ̸=i

v2j,∗

 1
2

= a1b1 + a2b2,

which implies ηs ≥ η̃s. It then follows from (3.19) that x−2
s ≤ 2ηs + 1, which to-

gether with (3.18) implies Π̂4 ≥ 0. Then by using (3.16), we conclude φσ

(
U +

θFi(U);v∗, ρ∗
)
+ θeσvi,∗ρ

Γ
∗ ≥ eσρΓΠ̂4 ≥ 0. Hence, the inequality (3.12) holds, which

completes the proof.

Remark 3.10. We would like to highlight the term (θeσvi,∗ρ
Γ
∗ ) in the inequality

(3.12). It appears that this term is superfluous, as the second constraint in the

equivalent form Ω
(2)
σ does not contain such a term. But in fact, this technical term

is necessary and very crucial. If it is removed from (3.12), the resulting inequality
would not hold any longer. Although its value is not always positive, this term helps
to offset the “negative part” of φσ(U + θFi(U);v∗, ρ∗). Moreover, this extra term
will be canceled out in our IRP analyses; see the proofs of Theorems 3.11–3.13.

3.3.2. Derivation of gLF splitting properties.

Theorem 3.11 (one-dimensional (1D) gLF splitting). If Û = (D̂, m̂⊤, Ê)⊤ ∈
Ωσ and Ǔ = (Ď, m̌⊤, Ě)⊤ ∈ Ωσ, then for any α ≥ c = 1 and any given i ∈ {1, . . . , d},
it holds that

(3.20) Gi,α(Û, Ǔ) :=
1

2

(
Û− Fi(Û)

α
+ Ǔ+

Fi(Ǔ)

α

)
∈ Ωσ.

Proof. The first component of Gi,α equals 1
2

(
D̂
(
1− v̂i

α

)
+ Ď

(
1 + v̌i

α

))
> 0. With

the help of Theorem 3.9, we obtain, for any v∗ ∈ B1(0) and any ρ∗ ∈ R+, that

2φσ

(
Gi,α;v∗, ρ∗

)
= φσ

(
U− Fi(U)

α
;v∗, ρ∗

)
− eσ

vi,∗ρ
Γ
∗

α
+ φσ

(
U+

Fi(U)

α
;v∗, ρ∗

)
+ eσ

vi,∗ρ
Γ
∗

α
≥ 0,

2Subtracting the right-hand side terms from the left-hand side terms leads to −(a2 − b2 −a1b2 +
a2b1)2 ≤ 0.
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where we have used the linearity of φσ(U;v∗, ρ∗) with respect to U. Then, using

Theorem 3.3 concludes that Gi,α ∈ Ω
(2)
σ = Ωσ.

Remark 3.12. Another approach to show Theorem 3.11 is based on the assump-
tion that the exact Riemann solver preserves the invariant domain, which is reasonable
but not yet proven for RHD. Our present analysis approach is rigorous, does not rely
on any assumption, and would motivate the further study of IRP schemes for some
complicated physical systems such as the MHD equations.

Next, we present the multidimensional gLF splitting property on a general poly-
gonal or polyhedron cell. For any vector ξ = (ξ1, . . . , ξd)

⊤ ∈ Rd, we define ξ ·F(U) :=∑d
k=1 ξkFk(U).

Theorem 3.13. For 1 ≤ j ≤ N , let sj > 0 and the unit vector ξ(j) = (ξ
(j)
1 , . . . ,

ξ
(j)
d )⊤ satisfy

(3.21)

N∑
j=1

sjξ
(j) = 0.

Given admissible states U(ij) ∈ Ωσ, 1 ≤ i ≤ Q, 1 ≤ j ≤ N , then for any α ≥ c = 1,
it holds that

U :=
1

N∑
j=1

sj

N∑
j=1

Q∑
i=1

sjωi

(
U(ij) − 1

α
ξ(j) · F(U(ij))

)
∈ Ωσ,(3.22)

where {ωi}Qi=1 are all positive with
∑Q

i=1 ωi = 1.

Proof. Let Q
(j)
ξ ∈ Rd×d be a rotational matrix associated with the unit vector

ξ(j) and satisfying

(3.23) e⊤1 Q
(j)
ξ = (ξ(j))⊤,

where e1 = (1,0⊤
d−1)

⊤, and 0d−1 denotes the zero vector in Rd−1. It can be verified
that the system (1.1) satisfies the following rotational invariance property:

(3.24) ξ(j) · F(U(ij)) = Q−1
j F1(QjU

(ij)),

where Qj := diag{1,Q(j)
ξ , 1}. Notice that the matrix Q

(j)
ξ is orthogonal. For any

fixed j and any v∗ ∈ B1(0), define v̂∗ := Q
(j)
ξ v∗ ∈ B1(0). Utilizing (3.23) gives

(3.25) v̂1,∗ = e⊤1 v∗ = e⊤1 Q
(j)
ξ v∗ = ξ(j) · v∗.

For U(ij) ∈ Ωσ, with the aid of the first equivalent form Ω
(1)
σ in (3.2), one can verify

that Û(ij) := QjU
(ij) ∈ Ω

(1)
σ = Ωσ. For any v∗ ∈ B1(0) and any ρ∗ > 0, we have

φσ

(
U(ij) − α−1ξ(j) · F(U(ij));v∗, ρ∗

)
− α−1eσ

(
ξ(j) · v∗

)
ρΓ∗

= φσ

(
Q−1

j Û(ij) − α−1Q−1
j F1(Û

(ij)); (Q
(j)
ξ )−1v̂∗, ρ∗

)
− α−1eσ v̂1,∗ρ

Γ
∗

= φσ

(
Û(ij) − α−1F1(Û

(ij)); v̂∗, ρ∗

)
− α−1eσ v̂1,∗ρ

Γ
∗ ≥ 0,(3.26)
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where the first and second steps follow from (3.24)–(3.25) and the orthogonality of

Q
(j)
ξ , respectively, and the inequality follows from Theorem 3.9 for Û(ij) ∈ Ωσ, v̂∗ ∈

B1(0), ρ∗ ∈ R+, and θ = α−1. Thus N∑
j=1

sj

φσ

(
U;v∗, ρ∗

)
=

N∑
j=1

Q∑
i=1

sjωiφσ

(
U(ij) − α−1ξ(j) · F(U(ij));v∗, ρ∗

)

≥ α−1eσ
N∑
j=1

Q∑
i=1

sjωi

(
ξ(j) · v∗

)
ρΓ∗

= α−1eσρΓ∗

 N∑
j=1

sjξ
(j)

 · v∗ = 0,

where we have used the linearity of φσ(U;v∗, ρ∗) with respect to U, the inequality
(3.26), and the condition (3.21). Therefore, φσ(U;v∗, ρ∗) ≥ 0 for any v∗ ∈ B1(0) and
any ρ∗ > 0. Note that the first component of U equals

1∑N
j=1 sj

N∑
j=1

Q∑
i=1

sjωiD
(ij)

(
1− 1

α
ξ(j) · v(ij)

)

≥ 1∑N
j=1 sj

N∑
j=1

Q∑
i=1

sjωiD
(ij)

(
1− ∥v(ij)∥

α

)
> 0.

Hence, U ∈ Ω
(2)
σ . Thanks to Theorem 3.3, we have U ∈ Ωσ, which completes the

proof.

As two special cases of Theorem 3.13, the following corollaries show the gLF
splitting properties on 2D and three-dimensional (3D) Cartesian mesh cells.

Corollary 3.14. If Ūi, Ũi, Ûi, Ǔi ∈ Ωσ for i = 1, . . . , Q, then for any α ≥
c = 1, it holds that

U :=
1

2
(

1
∆x + 1

∆y

) Q∑
i=1

ωi

(
G1,α(Ū

i, Ũi)

∆x
+

G2,α(Û
i, Ǔi)

∆y

)
∈ Ωσ,(3.27)

where ∆x > 0,∆y > 0, and {ωi}Qi=1 are all positive with
∑Q

i=1 ωi = 1.

Corollary 3.15. If Ūi, Ũi, Ûi, Ǔi, Úi, Ùi ∈ Ωσ for i = 1, . . . , Q, then for any
α ≥ 1, it holds that

U :=
1

2
(

1
∆x + 1

∆y + 1
∆z

) Q∑
i=1

ωi(3.28)

·

(
G1,α(Ū

i, Ũi)

∆x
+

G2,α(Û
i, Ǔi)

∆y
+

G3,α(Ú
i, Ùi)

∆z

)
∈ Ωσ,

where ∆x > 0,∆y > 0,∆z > 0, and {ωi}Qi=1 are all positive with
∑Q

i=1 ωi = 1.
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4. One-dimensional invariant-region-preserving schemes. In this section,
we apply the above theories to explore IRP schemes for the RHD system (1.1) in
one spatial dimension. To avoid confusing subscripts, we will use the symbol x to
represent the variable x1 in (1.1). Let Ij = [xj− 1

2
, xj+ 1

2
], and let ∪jIj be a partition

of the spatial domain Σ. Denote ∆xj = xj+ 1
2
− xj− 1

2
. Assume that the time interval

is divided into the mesh {tn}Nt
n=0 with t0 = 0 and the time step-size ∆t determined by

the certain CFL condition. We use U
n

j to denote the numerical approximation to the
cell average of the exact solution U(x, t) over Ij at t = tn. Let U0(x) := U(x, 0) be an
initial solution, and let S0 := minx S(U0(x)). We are interested in numerical schemes

preserving U
n

j ∈ ΩS0 for the system. Note that the initial cell average U
0

j ∈ ΩS0 for
all j, according to the following lemma (the proof is provided in section SM5 of the
supplementary material).

Lemma 4.1. Assume that U0(x) is an (admissible) initial data of the RHD system
(1.1) on the domain Σ, i.e., it satisfies U0(x) ∈ G for all x ∈ Σ. For any I ⊆ Σ, we
have UI := 1

|I|
∫
I
U0(x)dx ∈ ΩS0

, where |I| =
∫
I
dx > 0, and S0 = minx S(U0(x)).

4.1. First-order scheme. Consider the first-order LF type scheme

(4.1) U
n+1

j = U
n

j − ∆t

∆xj

(
F̂1(U

n

j ,U
n

j+1)− F̂1(U
n

j−1,U
n

j )
)
,

where the numerical flux F̂1(·, ·) is defined by

(4.2) F̂1(U
−,U+) =

1

2

(
F1(U

−) + F1(U
+)− α(U+ −U−)

)
,

and α denotes the numerical viscosity parameter, which can be taken as α = c = 1, a
simple upper bound of all wave speeds in the theory of special relativity.

Lemma 4.2. If U
n

j−1, U
n

j , and U
n

j+1 all belong to Ωσ for certain σ, then the state

U
n+1

j , computed by the scheme (4.1) under the CFL condition

(4.3) α∆t ≤ ∆xj ,

belongs to Ωσ.

Proof. We rewrite the scheme (4.1) as U
n+1

j = (1− λ)U
n

j + λG1,α(U
n

j+1,U
n

j−1),
where G1,α is defined in (3.20), and λ := α∆t/∆xj ∈ (0, 1]. Thanks to Theorem 3.11,

we have G1,α(U
n

j+1,U
n

j−1) ∈ Ωσ, which leads to U
n+1

j ∈ Ωσ by the convexity of Ωσ

(Lemma 3.7).

Lemma 4.2 implies a discrete (local) minimum entropy principle of the scheme
(4.1).

Theorem 4.3. If U
n

j−1, U
n

j , and U
n

j+1 all belong to G, then the state U
n+1

j ,
computed by the scheme (4.1) under the CFL condition (4.3), belongs to G and satisfies

S(U
n+1

j ) ≥ min
{
S(U

n

j−1), S(U
n

j ), S(U
n

j+1)
}
.

Proof. By Lemma 4.2 with σ = minj−1≤k≤j+1 S(U
n

k ), one directly draws the
conclusion.

The IRP property of the scheme (4.1) is shown in the following theorem.

Theorem 4.4. Under condition (4.3), the scheme (4.1) preserves U
n

j ∈ ΩS0
for

all j and n ≥ 0.
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Proof. We prove this by the mathematical induction for the time level number

n. By Lemma 4.1, we have U
0

j ∈ ΩS0 for all j, i.e., the conclusion holds for n = 0.

If we assume that U
n

j ∈ ΩS0 for all j, then, by Lemma 4.2 with σ = S0, we have

U
n+1

j ∈ ΩS0
for all j.

4.2. High-order schemes. This section studies the high-order IRP methods for
1D RHD equations. We first adopt the forward Euler method for the discretization in
time, and will discuss high-order time discretization later. For spatial discretization,
we consider the high-order finite volume schemes as well as the scheme satisfied by
the cell averages of a standard DG method. The fully discrete schemes can be written
into a unified form:

(4.4) U
n+1

j = U
n

j − ∆t

∆xj

(
F̂1(U

−
j+ 1

2

,U+
j+ 1

2

)− F̂1(U
−
j− 1

2

,U+
j− 1

2

)
)
,

where F̂1(·, ·) is taken as the LF flux in (4.2), and U±
j+ 1

2

= limϵ→0± Uh

(
xj+ 1

2
+ ϵ
)
.

Here Uh(x) is a piecewise polynomial vector function of degree k, i.e.,

Uh ∈ Vk
h :=

{
u = (u1, . . . , ud+2)

⊤ : uℓ

∣∣
Ij

∈ Pk ∀ℓ, j
}
,

with Pk denoting the space of polynomials of degree up to k. Specifically, the function
Uh(x) with

∫
Ij
Uhdx = U

n

j is an approximation to U(x, tn) within Ij . For the finite

volume methods, Uh(x) is reconstructed from {Un

j }. For the DG methods, U(x, tn)

is the piecewise polynomial DG solution, and U
n

j is the first “moment” of U(x, tn).
Here we omit the DG evolution equations for the high-order “moments” of U(x, tn)
and the specific reconstruction techniques in the finite volume methods because they
are independent of the IRP analyses and limiting techniques presented later.

4.2.1. Theoretical IRP analysis. If the polynomial degree k = 0, i.e.,Uh(x) =
U

n

j ∀x ∈ Ij , then the scheme (4.4) reduces to the first-order scheme (4.1), which is

IRP under the CFL condition (4.3). When k ≥ 1, the solution U
n+1

j computed by the
high-order accurate scheme (4.4) is not necessarily located in the invariant domain
ΩS0

even if U
n

j ∈ ΩS0
for all j. In Theorem 4.5, we derive a satisfiable condition

which provably ensures the IRP property of the scheme (4.4) with k ≥ 1.

Let {x̂(µ)
j , ω̂µ}Lµ=1 be the L-point Gauss–Lobatto quadrature nodes in Ij and

associated weights with
∑L

µ=1 ω̂µ = 1. In addition, we require 2L − 3 ≥ k and, in

particular, take L = ⌈k+3
2 ⌉.

Theorem 4.5. If the piecewise polynomial vector function Uh satisfies

(4.5) Uh(x̂
(µ)
j ) ∈ ΩS0

∀µ ∈ {1, 2, . . . , L}, ∀j,

then, under the CFL condition

(4.6)
α∆t

∆xj
≤ ω̂1 =

1

L(L− 1)
,

the solution U
n+1

j , computed by the high-order scheme (4.4), belongs to ΩS0 for all j.

Proof. The L-point Gauss–Lobatto quadrature rule with 2L − 3 ≥ k is ex-
act for polynomials of degree k or less. This implies U

n

j = 1
∆xj

∫
Ij
Uh(x)dx =
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MINIMUM ENTROPY PRINCIPLE AND IRP METHODS FOR RHD B1183∑L
µ=1 ω̂µUh(x̂

(µ)
j ). Noting that ω̂1 = ω̂L and x̂1,L

j = xj∓ 1
2
, we can then reformulate

the scheme (4.4) into a form of convex combination:

U
n+1

j =

L−1∑
µ=2

ω̂µUh(x̂
(µ)
j ) + (ω̂1 − λ)

(
U+

j− 1
2

+U−
j+ 1

2

)
+ λΞ− + λΞ+,(4.7)

where λ = α∆tn/∆x ∈ (0, ω̂1] and

Ξ± =
1

2

(
U±

j+ 1
2

−
F1(U

±
j+ 1

2

)

α
+U±

j− 1
2

+
F1(U

±
j− 1

2

)

α

)
.

According to the gLF splitting property in Theorem 3.11 and U±
j+ 1

2

∈ ΩS0 by (4.5),

we obtain Ξ± ∈ ΩS0
. Using the convexity of ΩS0

(Lemma 3.7), we conclude that

U
n+1

j ∈ ΩS0 from (4.7).

4.2.2. Invariant-region-preserving limiter. In general, the high-order scheme
(4.4) does not meet the condition (4.5) automatically. Now, we design a simple lim-
iter to effectively enforce the condition (4.5) without losing high-order accuracy and
conservation. Our limiter is motivated by the existing bound-preserving and physical-
constraint-preserving limiters (cf. [41, 42, 34, 24, 37, 28]).

Before presenting the limiter, we define q(U) := E −
√

D2 + ∥m∥2; then the
second constraint in (3.2) becomes q(U) > 0. As observed in [34], the function q(U)
is strictly concave. This function will play an important role in our limiter.

Denote Xj := {x̂(µ)
j }Lµ=1 and

Vk

h :=

{
u ∈ Vk

h :
1

∆xj

∫
Ij

u(x)dx ∈ ΩS0
∀j

}
,

Ṽk
h :=

{
u ∈ Vk

h : u
∣∣
Ij
(x) ∈ ΩS0 ∀x ∈ Xj , ∀j

}
.

For any Uh ∈ Vk

h with Uh

∣∣
Ij

=: Uj(x) =
(
Dj(x),mj(x), Ej(x)

)⊤
, we define the IRP

limiting operator Πh : Vk

h → Ṽk
h by

(4.8) ΠhUh

∣∣
Ij

= Ũj(x) ∀j,

with the limited polynomial vector function Ũj(x) constructed via the following three
steps.
Step (i). First, modify the density to enforce its positivity via

(4.9)

D̂j(x) = θ1

(
Dj(x)−D

n

j

)
+D

n

j , θ1 := min

{
1,

∣∣∣∣∣ D
n

j − ε1

D
n

j −minx∈Xj
Dj(x)

∣∣∣∣∣
}
,

where ε1 is a small positive number as the desired lower bound for density,
is introduced to avoid the effect of the round-off error, and can be taken as
ε1 = min{10−13, D

n

j }.
Step (ii). Then, modify Ûj(x) =

(
D̂j(x),mj(x), Ej(x)

)⊤
to enforce the positivity

of q(U) via

(

U j(x) = θ2

(
Ûj(x)−U

n

j

)
+U

n

j ,(4.10)
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B1184 KAILIANG WU

θ2 := min

{
1,

∣∣∣∣∣ q(Uj)− ε2

q(U
n

j )−minx∈Xj q(Ûj(x))

∣∣∣∣∣
}
,

where ε2 is a small positive number as the desired lower bound for q(U),
is introduced to avoid the effect of the round-off error, and can be taken as
ε2 = min{10−13, q(U

n

j )}.
Step (iii). Finally, modify

(

U j(x) to enforce the entropy principle S(U) ≥ S0 via

(4.11) Ũj(x) = θ3

(
(

U j(x)−U
n

j

)
+U

n

j , θ3 := min
x∈Xj

θ̃(x),

where, for x ∈ {x ∈ Xj : S(
(

U j(x)) ≥ S0}, θ̃(x) = 1, and, for x ∈ {x ∈ Xj :

S(

(

U j(x)) < S0}, θ̃(x) is the (unique) solution to the nonlinear equation

S
(
(1− θ̃)U

n

j + θ̃

(

U j(x)
)
= S0, θ̃ ∈ [0, 1).

The limiter Πh is a combination of the bound-preserving limiter (4.9)–(4.10)
(cf. [24]) and the entropy limiter (4.11). According to the above definition of the
limiter Πh and the Jensen’s inequality for the concave function q(U), we immediately
obtain the following proposition.

Proposition 4.6. For any Uh ∈ Vk

h, one has ΠhUh ∈ Ṽk
h.

Proposition 4.6 indicates that the limited solution (4.8) satisfies the condition
(4.5). Note that this type of local scaling limiters keep the conservation

∫
Ij
Πh(u)dx =∫

Ij
udx ∀u ∈ Vk

h and do not destroy the high-order accuracy; see [40, 41, 39] for details.

Remark 4.7. The invariant region ΩS0 can also be reformulated as

Ω
(1)
S0

=
{
U = (D,m⊤, E)⊤ ∈ Rd+2 : D > 0, q(U) > 0, q̃(U) ≥ 0

}
,

where q̃(U) := D(S(U)− S0), and we have used D > 0 to reformulate the third con-
straint S(U) ≥ S0 in (3.2). Thanks to Proposition 2.1, the function q̃(U) is strictly
concave for U ∈ G. Motivated by this property and [16], we can also construct an-
other (simpler but possibly more restrictive) approach to enforce the entropy principle

S(U) ≥ S0 by modifying

(

U j(x) to

Ũj(x) = θ̃3

(

(

U j(x)−U
n

j

)
+U

n

j , θ̃3 := min

{
1,

∣∣∣∣∣ q̃(U
n

j )

q̃(U
n

j )−minx∈Xj q̃(

(

U j(x))

∣∣∣∣∣
}
.

With the aid of the IRP limiter Πh defined in (4.8), we modify the high-order
scheme (4.4) into
(4.12)

U
n+1

j = U
n

j − ∆t

∆xj

(
F̂1(Ũ

−
j+ 1

2

, Ũ+
j+ 1

2

)− F̂1(Ũ
−
j− 1

2

, Ũ+
j− 1

2

)
)
=: U

n

j +∆tLj(ΠhUh),

where Ũ±
j+ 1

2

= limϵ→0± ΠhUh

(
xj+ 1

2
+ ϵ
)
. Based on Theorem 4.5 and Proposition 4.6,

we know that the scheme (4.12) is IRP under the CFL condition (4.6).
The scheme (4.12) is only of first-order accuracy in time. To achieve IRP schemes

of high-order accuracy in both time and space, we can use any high-order accurate
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MINIMUM ENTROPY PRINCIPLE AND IRP METHODS FOR RHD B1185

strong-stability-preserving (SSP) methods [4] to replace the forward Euler time dis-
cretization in (4.12). For instance, the widely used third-order SSP Runge–Kutta
(SSP-RK) method can be used

(4.13)


U

∗
j = U

n

j +∆tLj(ΠhUh),

U
∗∗
j = 3

4U
n

j + 1
4

(
U

∗
j +∆tLj(ΠhU

∗
h)
)
,

U
n+1

j = 1
3U

n

j + 2
3

(
U

∗∗
j +∆tLj(ΠhU

∗∗
h )
)
,

as well as the third-order accurate SSP multistep (SSP-MS) method,

(4.14) U
n+1

j =
16

27
(U

n

j + 3∆tLj(ΠhU
n
h)) +

11

27

(
U

n−3

j +
12

11
∆tLj(ΠhU

n−3
h )

)
.

Since SSP methods are formally convex combinations of the forward Euler method,
the resulting high-order schemes (4.13) and (4.14) are still IRP, according to the
convexity of ΩS0 (Lemma 3.7).

5. Multidimensional invariant-region-preserving schemes. In this sec-
tion, we study IRP schemes for the 2D RHD equations, while keeping in mind that
our IRP analyses and proposed IRP schemes are extensible to the 3D case. Assume
that the physical domain Σ in the 2D space is discretized by a mesh Th. In general,
the mesh may be unstructured and consists of polygonal cells. We also partition the
time interval into a mesh {tn}Nt

n=0 with t0 = 0 and the time step-size ∆t determined
by the certain CFL condition. We will use the capital letter K to denote an arbitrary
cell in Th. Let E j

K , j = 1, . . . , NK , denote the edges of K, and let Kj be the adjacent

cell sharing the edge E j
K with K. We use ξ

(j)
K =

(
ξ
(j)
1,K , ξ

(j)
2,K

)
to denote the unit normal

vector of E j
K , whose direction points from K to Kj . We use |E j

K | and |K| to represent

the length of E j
K and the area of K, respectively. Let U

n

K denote the numerical ap-
proximation to the cell average of the exact solution U(x, t) over K at t = tn. Define
U0(x) := U(x, 0) as the initial data and S0 := minx S(U0(x)). According to Lemma

4.1, the initial cell average U
0

K always belongs to ΩS0
for all K ∈ Th. We would like

to seek numerical schemes preserving U
n

K ∈ ΩS0 for all K ∈ Th and n ≥ 1.

5.1. First-order scheme. Consider the following first-order scheme on the
mesh Th for the RHD equations (1.1):

(5.1) U
n+1

K = U
n

K − ∆t

|K|

NK∑
j=1

∣∣∣E j
K

∣∣∣ F̂(Un

K ,U
n

Kj
; ξ

(j)
K

)
,

with the numerical flux F̂ taken as the LF flux

(5.2) F̂
(
U−,U+; ξ

)
=

1

2

(
ξ · F(U−) + ξ · F(U+)− α(U+ −U−)

)
,

where the numerical viscosity parameter α is chosen as the speed of light in vacuum
c = 1, which is a simple upper bound of all wave speeds in the theory of special
relativity.

Lemma 5.1. If U
n

K ∈ Ωσ, U
n

Kj
∈ Ωσ, 1 ≤ j ≤ NK , for certain σ, then the state

U
n+1

K , computed by the scheme (5.1) under the CFL condition

(5.3)
α∆t

2|K|

NK∑
j=1

∣∣∣E j
K

∣∣∣ ≤ 1,
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belongs to Ωσ.

Proof. Substituting the numerical flux (5.2) into the scheme (5.1) and then using

the identity
∑NK

j=1

∣∣E j
K

∣∣ξ(j)K = 0, we rewrite the scheme (5.1) as U
n+1

K = (1− λ)U
n

K +

λΞ, where λ := α∆t
2|K|

∑NK

j=1

∣∣E j
K

∣∣ ∈ (0, 1] under the condition (5.3), and

Ξ :=
1∑NK

j=1

∣∣∣E j
K

∣∣∣
NK∑
j=1

∣∣∣E j
K

∣∣∣ (Un

Kj
− 1

α
ξ
(j)
K · F

(
U

n

Kj

))
.

Thanks to the gLF splitting property in Theorem 3.13, we have Ξ ∈ Ωσ, which leads

to U
n+1

K ∈ Ωσ by the convexity of Ωσ (Lemma 3.7).

Lemma 5.1 implies a discrete (local) minimum entropy principle of the scheme
(5.1).

Theorem 5.2. If U
n

K ∈ G, Un

Kj
∈ G, 1 ≤ j ≤ NK , then the state U

n+1

K , computed
by the scheme (5.1) under the CFL condition (5.3), belongs to G and satisfies

S(U
n+1

K ) ≥ min

{
S(U

n

K), min
1≤j≤NK

S(U
n

Kj
)

}
.

Proof. By Lemma 5.1 with σ = min
{
S(U

n

K),min1≤j≤NK
S(U

n

Kj
)
}

we directly
draw the conclusion.

The IRP property of the scheme (5.1) is shown in the following theorem.

Theorem 5.3. Under condition (5.3), the scheme (5.1) preserves U
n

K ∈ ΩS0 for
all K ∈ Th and n ≥ 0.

Proof. The conclusion follows from Lemma 5.1 with σ = S0 and the principle of
mathematical induction for the time level number n.

5.2. High-order schemes. Next, we discuss the IRP high-order schemes for
the 2D RHD equations. As in the 1D case, we focus on the time discretization with
the forward Euler method, while our IRP techniques and analyses also work for high-
order time discretization using the explicit SSP methods, which are formed by convex
combinations of the forward Euler method [4].

To achieve (k+1)th-order accuracy in space, a piecewise polynomial vector func-
tion Uh(x) (i.e., Uh|K is a polynomial vector of degree k for all K ∈ Th) is also
constructed, as an approximation to the exact solution U(x, tn). It is either evolved
in the DG methods or reconstructed in the finite volume methods from the cell aver-
ages {Un

K : K ∈ Th}. Moreover, the cell average of Uh(x) over K is equal to U
n

K . A
high-order finite volume scheme as well as the scheme satisfied by the cell averages of
a standard DG method can then be written as

U
n+1

K = Ūn
K − ∆t

|K|

NK∑
j=1

|E j
K |F̂E j

K
,(5.4)

where F̂E j
K

=
∑Q

ν=1 ωνF̂
(
U

int(K)
h (x

(jν)
K ),U

ext(K)
h (x

(jν)
K ); ξ

(j)
K

)
. Here the superscripts

“ext(K)” and “int(K)” indicate that the corresponding limits of Uh(x) at the cell
edges are taken from the exterior and interior of K, respectively. The numerical flux

F̂ is taken as the LF flux defined in (5.2), and {x(jν)
K , ων}1≤ν≤Q denotes the Q-point

Gauss quadrature nodes and weights on E j
K . In the following, we derive a satisfiable
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condition which provably ensures the IRP property of the high-order accurate scheme
(5.4) when the polynomial degree k ≥ 1. Assume that one can exactly decompose the
cell average by certain 2D quadrature:

(5.5) U
n

K =
1

|K|

∫
K

Uh(x)dx =

NK∑
j=1

Q∑
ν=1

ϖjνU
int(K)
h (x

(jν)
K ) +

Q̃∑
β=1

ϖ̃βU
int(K)
h (x̃

(β)
K ),

where {x̃(β)
K } are the (possible) involved quadrature points excluding {x(jν)

K } in the cell

K; {ϖjν}, and {ϖ̃β} are positive weights satisfying
∑NK

j=1

∑Q
ν=1 ϖjν +

∑Q̃
β=1 ϖ̃β = 1.

Such a quadrature-based decomposition was first proposed by Zhang and Shu in [40,
41] on rectangular cells by tensor products of Gauss and Gauss–Lobatto quadratures.
It can also be designed on triangular cells and more general polygons, as demonstrated
in, e.g., [43, 20]. Define

(5.6) XK :=
{
x
(jν)
K

}
1≤j≤NK ,1≤ν≤Q

⋃{
x̃
(β)
K

}
1≤β≤Q̃

.

Theorem 5.4. If the piecewise polynomial vector function Uh satisfies

(5.7) Uh(x) ∈ ΩS0
∀x ∈ XK , ∀K ∈ Th,

then, under the CFL condition

(5.8) α∆t
|E j

K |
|K|

≤ min
1≤ν≤Q

ϖjν

ων
, 1 ≤ j ≤ NK ∀K ∈ Th,

the solution U
n+1

K , computed by the high-order scheme (5.4), belongs to ΩS0 for all
K ∈ Th.

Proof. Substituting the decomposition (5.5) into (5.4), we can reformulate the
scheme (5.4) into a form of convex combination:

U
n+1

K =

NK∑
j=1

Q∑
ν=1

(
ϖjν − α∆tων

|E j
K |

|K|

)
U

int(K)
h (x

(jν)
K )

+

Q̃∑
β=1

ϖ̃βU
int(K)
h (x̃

(β)
K ) +

α∆t

2|K|

 N∑
j=1

|E j
K |

(Ξint(K) + Ξext(K)
)
,(5.9)

with

Ξint(K) :=
1∑NK

j=1 |E
j
K |

NK∑
j=1

Q∑
ν=1

|E j
K |ων

(
U

int(K)
h (x

(jν)
K )− 1

α
ξ
(j)
K · F

(
U

int(K)
h (x

(jν)
K )

))
,

Ξext(K) :=
1∑NK

j=1 |E
j
K |

NK∑
j=1

Q∑
ν=1

|E j
K |ων

(
U

ext(K)
h (x

(jν)
K )− 1

α
ξ
(j)
K · F

(
U

ext(K)
h (x

(jν)
K )

))
.

Thanks to the gLF splitting property in Theorem 3.13, under assumption (5.7) we
obtain Ξint(K) ∈ ΩS0

and Ξext(K) ∈ ΩS0
. Using the convexity of ΩS0

(Lemma 3.7),

we conclude U
n+1

K ∈ ΩS0
from the convex combination form (5.9) under condition

(5.8).
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Theorem 5.4 provides a sufficient condition (5.7) for the high-order scheme (5.4) to
be IRP. The condition (5.7), which is not satisfied automatically in general, can again
be enforced by a simple IRP limiting operator Πh similar to the 1D case; see section
4.2.2, with the 1D point set Xj replaced by the 2D point set XK (5.6) accordingly.

With the IRP limiter applied to the approximate solution Ũh = ΠhUh, the resulting
scheme

U
n+1

K = Ūn
K − ∆t

|K|

NK∑
j=1

Q∑
ν=1

|E j
K |ωνF̂

(
Ũ

int(K)
h (x

(jν)
K ), Ũ

ext(K)
h (x

(jν)
K ); ξ

(j)
K

)

is IRP and also high-order accurate in space. As in the 1D case, Theorem 5.4 also
remains valid if a high-order SSP time discretization [4] is used. Illustration and some
details of the 2D IRP schemes on Cartesian meshes can be found in section SM6 of
the supplementary material.

6. Numerical tests. In this section, we present numerical tests on several
benchmark RHD problems to validate the accuracy and effectiveness of our IRP DG
methods on 1D and 2D uniform Cartesian meshes. The third-order SSP-RK method
(4.13) or SSP-MS method (4.14) will be employed for time discretization. Unless oth-
erwise stated, we take the adiabatic index as Γ = 5/3, and set the CFL numbers as
0.3, 0.15, 0.1, respectively, for the second-order (P 1-based), third-order (P 2-based),
and fourth-order (P 3-based) DG methods with the SSP-RK time discretization; the
CFL numbers for the SSP-MS-DG methods are one-third of those for the SSP-RK-DG
methods.

For convenience, we refer to the 1D bound-preserving limiter (4.9)–(4.10) (cf. [24])
as the BP limiter. Our IRP limiter (4.9)–(4.11) corresponds to a combination of the
BP limiter and the entropy limiter (4.11). The same names/abbreviations will also be
used for those corresponding limiters in the 2D case. We will compare the numerical
results with our IRP limiter and those with only the BP limiter. For testing purposes
as in [24, 16], in the simulations we do not use any other nonoscillatory limiters (e.g.,
the TVB or WENO limiters) unless otherwise stated.

6.1. Example 1: 1D smooth problem. To examine the accuracy of our 1D
DG methods we first test a smooth problem similar to [24, 37, 41, 42]. The initial
conditions are ρ(x, 0) = 1 + 0.99999 sin

(
2πx

)
, v(x, 0) = 0.9, p(x, 0) = 1. The com-

putational domain is taken as [0, 1] with periodic boundary conditions, so that the
exact solution is ρ(x, t) = 1 + 0.99999 sin

(
2π(x − 0.9t)

)
, v(x, t) = 0.9, p(x, t) = 1.

In the computations, the domain is partitioned into N uniform cells with N ∈
{10, 20, 40, 80, 160, 320}. For the P 3-based DG method, we take (only in this accuracy

test) the time step-sizes as ∆t = 0.1∆x
4
3 and ∆t = 0.1

3 ∆x
4
3 for the third-order SSP-

RK and SSP-MS time discretizations, respectively, so as to match the fourth-order
accuracy of spatial discretization.

Table 6.1 lists the numerical errors at t = 0.2 in the rest-mass density and the
corresponding convergence rates for the P k-based IRP DG methods (k = 1, 2, 3) at
different grid resolutions. As observed in [42, 24], the accuracy degenerates for SSP-
RK and k ≥ 2, which is due to the lower-order accuracy in the RK intermediate stages
as explained in [42]. The desired full order of accuracy is observed for the SSP-MS
time discretization, indicating that the IRP limiter itself does not lose the accuracy
for smooth solutions as expected from the analyses in [40, 39, 16].
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MINIMUM ENTROPY PRINCIPLE AND IRP METHODS FOR RHD B1189

Table 6.1
Example 1: Errors at t = 0.2 in the rest-mass density for the proposed Pk-based DG methods

(k = 1, 2, 3), with the SSP-RK or SSP-MS time discretization, at different spatial grid resolutions.

SSP-RK SSP-MS

k N l1 error Order l2 error Order l1 error Order l2 error Order

1

10 1.75e-2 – 1.98e-2 – 1.72e-2 – 1.96e-2 –
20 3.16e-3 2.47 4.47e-3 2.14 3.13e-3 2.46 4.41e-3 2.15
40 8.19e-4 1.95 1.08e-3 2.05 8.19e-4 1.94 1.07e-3 2.05
80 1.93e-4 2.08 2.49e-4 2.11 1.92e-4 2.09 2.46e-4 2.12
160 4.63e-5 2.06 5.87e-5 2.08 4.61e-5 2.06 5.84e-5 2.08
320 1.13e-5 2.04 1.38e-5 2.09 1.12e-5 2.04 1.37e-5 2.09

2

10 1.24e-3 – 1.47e-3 – 7.76e-4 3.21 9.15e-4 3.31
20 1.83e-4 2.76 2.37e-4 2.63 8.40e-5 3.04 9.24e-5 3.02
40 2.75e-5 2.74 4.98e-5 2.25 1.02e-5 3.00 1.14e-5 3.00
80 4.06e-6 2.76 1.03e-5 2.28 1.27e-6 3.00 1.42e-6 3.00
160 5.90e-7 2.78 2.12e-6 2.28 1.59e-7 3.00 1.77e-7 3.00
320 9.16e-8 2.69 4.51e-7 2.23 1.99e-8 3.00 2.22e-8 3.00

3

10 6.12e-5 – 8.32e-5 – 1.92e-5 – 2.24e-5 –
20 4.84e-6 3.66 9.94e-6 3.07 1.29e-6 3.90 1.50e-6 3.90
40 3.00e-7 4.01 9.89e-7 3.33 7.86e-8 4.04 8.89e-8 4.07
80 2.71e-8 3.47 1.26e-7 2.97 4.85e-9 4.02 5.48e-9 4.02
160 2.30e-9 3.55 1.52e-8 3.05 3.04e-10 4.00 3.42e-10 4.00
320 2.08e-10 3.47 1.84e-9 3.04 1.90e-11 4.00 2.13e-11 4.01

6.2. Example 2: 1D Riemann problem. This example investigates the ca-
pability of our methods in resolving discontinuous solutions by testing a 1D Riemann
problem in the domain [0, 1] with the following initial conditions:

(ρ, v, p)(x, 0) =

{
(0.8, 0.5, 8), x < 0.5,

(1, 0, 1), x > 0.5.

The solution consists of a left-moving rarefaction wave, a constant discontinuity, and
a right-moving shock wave. Figure 6.1 displays the numerical solutions computed by
the fourth-order DG methods with the BP or IRP limiter, respectively, on a mesh of
320 uniform cells, against the exact solution. In this simulation, we do not use any
other nonoscillatory limiters such as the TVB or WENO limiters. We can observe
that the numerical results with only the BP limiter exhibit overshoot in the rest-
mass density near the contact discontinuity and some small oscillations. When the
IRP limiter is applied (i.e., the entropy limiter (4.11) is added), the overshoot and
oscillations in the DG solution are damped. This is consistent with the observation
in [18, 42, 16] that enforcing the discrete minimum entropy principle could help to
suppress numerical oscillations. Figure 6.2 shows the time evolution of the minimum
specific entropy values of the DG solutions. It is seen that the minimum remains the
same for the DG scheme with the IRP limiter, which indicates that the minimum
entropy principle is preserved, while the DG scheme with only the BP limiter fails to
keep the principle.

6.3. Example 3: 2D smooth problem. To check the accuracy of our 2D
IRP DG methods we simulate a smooth problem from [37], with the initial data
ρ(x, y, 0) = 1 + 0.99999 sin(2π(x+ y)), v(x, y, 0) = (0.99/

√
2, 0.99/

√
2)⊤, p(x, y, 0) =

10−2, in the domain [0, 1]2 with periodic boundary conditions. The exact solution is
ρ(x, y, 0) = 1 + 0.99999 sin(2π(x + y − 0.99

√
2t)), v(x, y, t) = (0.99/

√
2, 0.99/

√
2)⊤,

p(x, y, t) = 10−2, which describes the propagation of an RHD sine wave with low
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0 0.2 0.4 0.6 0.8 1
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1.5

2

2.5

0.72 0.76 0.8 0.84 0.88

2.4

2.5

2.6

2.7

2.8

(a) ρ: With the BP limiter

0 0.2 0.4 0.6 0.8 1

0

0.15

0.3

0.45

0.6

0.5 0.55 0.6

0.61

0.62

0.63

0.64

(b) v: With the BP limiter

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

0.72 0.76 0.8 0.84 0.88

2.4

2.5

2.6

2.7

2.8

(c) ρ: With the IRP limiter

0 0.2 0.4 0.6 0.8 1

0

0.15

0.3

0.45

0.6

0.5 0.55 0.6

0.61

0.62

0.63

0.64

(d) v: With the IRP limiter

Fig. 6.1. Example 2: The computed rest-mass density and velocity (and their close-up) at
t = 0.4. The symbols “◦” denote the numerical solutions obtained by the fourth-order DG methods
with the BP limiter or with the IRP limiter on the mesh of 320 uniform cells, while the solid lines
denote the exact solution. (Here we do not use any other nonoscillatory limiters, e.g., the TVB or
WENO limiters.)

0 0.1 0.2 0.3 0.4

-4

-3

-2

-1

0

1
with the BP limiter

with the IRP limiter

0 0.1 0.2 0.3 0.4

-20

-15

-10

-5

0

5

10
-3

with the BP limiter

with the IRP limiter

Fig. 6.2. Example 2: Time evolution of Smin(t) for the DG solutions with the IRP limiter

(4.9)–(4.11) or with the BP limiter (4.9)–(4.10). Left: Smin(t) = minj,µ S(Uh(x̂
(µ)
j , t)). Right:

Smin(t) = minj S(Uj(t)).

density, low pressure, and large velocity, at an angle 45◦ with the x-axis.
In the computations, the domain is partitioned into N ×N uniform rectangular

cells with N ∈ {10, 20, 40, 80, 160}. For the P 3-based DG method, we take (only in

this accuracy test) the time step-sizes as ∆t = 0.1
(
∆x
2

) 4
3 and ∆t = 0.1

3

(
∆x
2

) 4
3 for the
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MINIMUM ENTROPY PRINCIPLE AND IRP METHODS FOR RHD B1191

third-order SSP-RK and SSP-MS time discretizations, respectively, so as to match
the fourth-order accuracy of spatial DG discretization. Table 6.2 lists the numerical
errors at t = 0.2 in the rest-mass density and the corresponding convergence rates
for the P k-based IRP DG methods (k = 1, 2, 3) at different grid resolutions. Similar
to the 1D case and as also observed in [42, 24], the accuracy slightly degenerates for
SSP-RK and k ≥ 2. The desired full order of accuracy is observed for the SSP-MS
time discretization, confirming that the IRP limiter itself does not lose the accuracy
for smooth solutions as expected.

Table 6.2
Example 3: Errors at t = 0.2 in the rest-mass density for the proposed Pk-based DG methods

(k = 1, 2, 3), with the SSP-RK or SSP-MS time discretization, at different spatial grid resolutions.

SSP-RK SSP-MS

k N l1 error Order l2 error Order l1 error Order l2 error Order

1

10 3.95e-2 – 4.80e-2 – 4.02e-2 – 4.80e-2 –
20 7.62e-3 2.37 1.01e-2 2.24 7.54e-3 2.41 1.00e-2 2.26
40 1.65e-3 2.21 2.25e-3 2.17 1.65e-3 2.20 2.24e-3 2.15
80 3.85e-4 2.10 5.41e-4 2.05 3.84e-4 2.10 5.40e-4 2.05
160 9.49e-5 2.02 1.34e-4 2.01 9.48e-5 2.02 1.34e-4 2.01

2

10 1.14e-2 – 1.46e-2 – 1.06e-2 – 1.34e-2 –
20 3.90e-4 4.88 5.00e-4 4.87 3.80e-4 4.80 4.89e-4 4.78
40 4.89e-5 3.00 6.21e-5 3.01 4.11e-5 3.21 5.47e-5 3.16
80 6.55e-6 2.90 8.62e-6 2.85 4.90e-6 3.07 6.72e-6 3.03
160 7.65e-7 3.10 1.22e-6 2.83 6.08e-7 3.01 8.38e-7 3.00

3

10 2.51e-4 – 3.75e-4 – 2.47e-4 – 3.70e-4 –
20 1.82e-5 3.79 2.65e-5 3.82 1.81e-5 3.77 2.68e-5 3.79
40 9.60e-7 4.24 1.43e-6 4.21 9.02e-7 4.33 1.30e-6 4.37
80 6.55e-8 3.87 1.04e-6 3.78 5.56e-8 4.02 7.67e-8 4.08
160 4.51e-9 3.86 9.14e-9 3.51 3.46e-9 4.01 4.71e-9 4.03

6.4. Example 4: Shock-bubble interaction. This example simulates the in-
teraction between a planar shock wave and a light bubble within the domain [0, 325]×
[−45, 45]. The setup is the same as in [13, 44]. Initially, a left-moving relativistic shock
wave is located at x = 265 with the left and right states given by

(ρ,v, p)(x, y, 0) =

{
(1, 0, 0, 0.05), x < 265,

(1.865225080631180, − 0.196781107378299, 0, 0.15), x > 265.

A light circular bubble with radius of 25 is initially centered at (215, 0) in front
of the initial shock wave. The fluid state within the bubble is (ρ,v, p)(x, y, 0) =
(0.1358, 0, 0, 0.05). The reflective conditions are specified at both the top and bot-
tom boundaries {y = ±45, 0 ≤ x ≤ 325}, and the inflow (resp., outflow) boundary
condition is enforced at the right (resp., left) boundary.

In this simulation, we do not use any other nonoscillatory limiters, e.g., TVB
or WENO limiters. Figure 6.3 shows the numerical results obtained by the fourth-
order DG methods, with the BP limiter or the IRP limiter, respectively, on a mesh
of 650 × 180 uniform cells. We observe serious oscillations developing near the top
and bottom boundaries in the DG solution with only the BP limiter. However, if the
IRP limiter is used, the undesirable oscillations are almost suppressed. From Figure
6.3(b), one can observe that the bubble interface, some small wave structures, and
discontinuities are sharply resolved by the IRP DG method. To check the preservation
of the minimum entropy principle, we plot the time evolution of the minimum specific
entropy values of the DG solutions in Figure 6.4. It shows that the minimum stays
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(a) With the BP limiter (b) With the IRP limiter

Fig. 6.3. Example 4: Schlieren images of the density at t = 180, 360, and 450 (from top to
bottom) obtained by the fourth-order DG methods on the mesh of 650× 180 cells. (Here we do not
use any other nonoscillatory limiters, e.g., TVB or WENO limiters.)

the same for the DG scheme with the IRP limiter, which indicates that the minimum
entropy principle is maintained, while the DG scheme with only the BP limiter does
not preserve the principle.

0 90 180 270 360 450

-25

-20

-15

-10

-5

0

5

with the BP limiter

with the IRP limiter

0 90 180 270 360 450

-4.5

-4

-3.5

-3

-2.5

with the BP limiter

with the IRP limiter

Fig. 6.4. Example 4: Time evolution of Smin(t) for the DG solutions with the IRP lim-
iter or with the BP limiter. Left: Smin(t) = minK∈Th

minx∈XK
S(Uh(x, t)). Right: Smin(t) =

minK∈Th
S(UK(t)).

6.5. Example 5: Two 2D Riemann problems. In this test, we simulate two
Riemann problems of the 2D RHD equations, which have become benchmark tests
for checking 2D RHD codes (cf. [13, 44, 34, 37, 2]).

The first Riemann problem was proposed in [34], with the initial data given by

(ρ,v, p)(x, y, 0)

=


(0.1, 0, 0, 20)⊤, x > 0, y > 0,

(0.00414329639576, 0.9946418833556542, 0, 0.05)⊤, x < 0, y > 0,

(0.01, 0, 0, 0.05)⊤, x < 0, y < 0,

(0.00414329639576, 0, 0.9946418833556542, 0.05)⊤, x > 0, y < 0,
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MINIMUM ENTROPY PRINCIPLE AND IRP METHODS FOR RHD B1193

where the left and lower initial discontinuities are contact discontinuities, and the
upper and right are shock waves. Because the maximal value of the fluid velocity
is very close to the speed of light (c = 1), nonphysical numerical solutions can be
easily produced in the simulation, making this test challenging. For testing purposes,
we do not use any other nonoscillatory limiters, e.g., TVB or WENO limiters. We
evolve the solution up to t = 0.8 on the mesh of 200 × 200 cells within the domain
[−1, 1]2. The contours of log(ρ) are displayed in Figure 6.5, obtained by the fourth-
order DG methods, with the BP or IRP limiter, respectively. Serious oscillations are
observed in the DG solution with only the BP limiter, while if the IRP limiter is used
(i.e., the entropy limiter is added), the oscillations are much reduced. The minimum
entropy principle of the DG solution with the IRP limiter is validated in Figure 6.7.
As the numerical solution is preserved in the set ΩS0

, the IRP DG scheme exhibits
good robustness in the simulation of such ultra-relativistic flow; the computed flow
structures agree well with those reported in [34, 2]. We remark that if the BP or IRP
limiter is turned off, the DG code would break down due to nonphysical numerical
solutions.

-0.6 -0.2 0.2 0.6

-1

-0.6

-0.2

0.2

0.6

1

(a) With the BP limiter
(without any other nonoscil-
latory limiters).

-0.6 -0.2 0.2 0.6

-1

-0.6

-0.2

0.2

0.6

1

(b) With the IRP limiter
(without any other nonoscil-
latory limiters).

Fig. 6.5. The first 2D Riemann problem: The contours of log(ρ) at t = 0.8 obtained by the
fourth-order DG methods with the BP limiter (left) or with the proposed IRP limiter (right), on
the mesh of 200 × 200 cells. Eighteen equally spaced contour lines from −7.8981 to −2.5631 are
displayed.

The second Riemann problem was first proposed in [13], and its initial condition
is given by

(ρ,v, p)(x, y, 0) =


(0.035145216124503, 0, 0, 0.162931056509027)⊤, x > 0, y > 0,

(0.1, 0.7, 0, 1)⊤, x < 0, y > 0,

(0.5, 0, 0, 1)⊤, x < 0, y < 0,

(0.1, 0, 0.7, 1)⊤, x > 0, y < 0.

Figures 6.6(a) and 6.6(b) display the contours of log(ρ) at t = 0.8, obtained by the
fourth-order DG methods, with the BP or IRP limiter, respectively, and without any
nonoscillatory limiters, on the mesh of 200 × 200 cells within the domain [−1, 1]2.
For comparison and reference, we also present in Figures 6.6(c) the numerical result
obtained by the fourth-order DG method with only the WENO limiter [44] on the
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-0.6
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0.6

1

(a) BP limiter.

-0.6 -0.2 0.2 0.6

-1

-0.6

-0.2

0.2

0.6

1

(b) IRP limiter.

-0.6 -0.2 0.2 0.6

-1

-0.6

-0.2

0.2

0.6

1

(c) WENO limiter.

Fig. 6.6. The second 2D Riemann problem: The contours of log(ρ) at t = 0.8 obtained by the
fourth-order DG methods with three different limiters. Twenty equally spaced contour lines from
−3.2533 to −0.426 are displayed.

0 0.2 0.4 0.6 0.8

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8 with the BP limiter

with the IRP limiter

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4
with the BP limiter

with the IRP limiter

Fig. 6.7. Example 5: Time evolution of Smin(t) = minK∈Th
S(UK(t)) for the DG solutions

with the IRP limiter or with the BP limiter. Left: for the first 2D Riemann problem. Right: for the
second 2D Riemann problem.

same mesh. (The WENO limiter is applied only within some “trouble” cells adaptively
identified by the KXRCF indicator [19].) It is observed that the DG solution with
only the BP limiter is oscillatory, while enforcing the minimum entropy principle by
the IRP limiter does help to damp most of the oscillations. Although the WENO
limiter may completely suppress the undesirable oscillations, the resulting numerical
solution in Figure 6.6(c) is much more dissipative than that computed with the IRP
limiter in Figure 6.6(b). Figure 6.7 shows the time evolution of the minimum specific
entropy values of the DG solutions. One can see that the minimum remains the same
for the DG scheme with the IRP limiter. This implies the preservation of minimum
entropy principle, which, however, is not ensured by only using either the BP limiter
or the WENO limiter.

The above numerical results have shown that the IRP limiter does help to pre-
serve numerical solutions in the invariant domain ΩS0

and to damp some numerical
oscillations while keeping the high resolution. As pointed out in [16], the IRP limiter is
still a mild limiter and may not completely suppress all the oscillations. For problems
involving strong shocks, one may use the IRP limiter together with a nonoscillatory
limiter (e.g., the WENO limiter) to sufficiently control all the undesirable oscillations
while also preserving the invariant region ΩS0

. Additional numerical examples, in-
cluding a strong relativistic blast wave and two astrophysical jets, are presented in
section SM7 of the supplementary material.
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7. Conclusions. In this work, we extended Tadmor’s minimum entropy princi-
ple (1.9) to the RHD equations (1.1) with the ideal EOS, and then developed high-
order accurate IRP DG and finite volume schemes for RHD, which provably preserve
a discrete minimum entropy principle as well as the intrinsic physical constraints
(1.5). This was the first time that such a minimum entropy principle was explored for
RHD at the continuous and discrete levels. Due to the relativistic effects, the specific
entropy is a highly nonlinear function of the conservative variables and cannot be
explicitly expressed. This led to some essential difficulties in this work which were
not encountered in the nonrelativistic case. In order to address the difficulties, we
first proposed a novel equivalent form of the invariant region. As a notable feature,
all the constraints in this novel form became explicit and linear with respect to the
conservative variables. This provided a highly effective approach to theoretically an-
alyze the IRP property of numerical RHD schemes. We showed the convexity of the
invariant region and established the generalized LF splitting properties via technical
estimates. We rigorously proved that the first-order LF type scheme for the RHD
equations satisfies a local minimum entropy principle and is IRP under a CFL con-
dition. We then developed and analyzed provably IRP high-order accurate DG and
finite volume methods for the RHD. Numerical examples confirmed that enforcing the
minimum entropy principle could help to damp some undesirable numerical oscilla-
tions and demonstrated the robustness of the proposed high-order IRP DG schemes.
The verified minimum entropy principle is an important property that can be incor-
porated into improving or designing other RHD schemes. In addition, the proposed
novel analysis techniques can be useful for investigating or seeking other IRP schemes
for the RHD or other physical systems.
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